Top 10 Considerations When Choosing a Borehole Pump


The increasing cost of water, coupled with the shortage of groundwater, leaves both domestic and commercial customers with the need for alternative methods to supply clean, naturally filtered water for applications such as irrigation and drinking water for animals. For some however, the problem is reversed – a high water table can render land unusable. Whether you’re trying to lower the water table or find a cost effective solution to watering your plants, borehole pumps can provide the perfect solution.

However, choosing a borehole pump can be a difficult decision considering the large range available and number of variables to consider. So, how do you decide which one is right for the job? Our handy list of 10 considerations to choosing a borehole pump will help make this decision easier.

1)       What is the application of the borehole pump?

Once you know what you want to achieve with the borehole pump you can begin to plan your system. Are you hoping to irrigate a garden? Store water in a tank? Lower the local water table? All of these things, and more, are possible but they all have very different factors to consider.

2)       What is the diameter of the borehole?

You must know the size of the borehole to ensure it fits correctly. The smaller the borehole, the smaller the pump would need to be and this would mean the pump would have a tougher time pumping the water to the surface.

For this reason, a pump which is smaller in diameter would need to have more stages to achieve the same duty, which tends to increase the price of the pump. That said, it is cheaper to drill a smaller bore hole than a larger one, so you will have to find a balance you are comfortable with.

3)       What is the average depth of the water level?

It takes a lot of effort to move water against gravity and with every 10 vertical meters an extra bar of pressure is needed to overcome it. Therefore, it is important to know the average depth of the water to gain an understanding of the power required in your borehole pump.

4)       How far away is the water being pumped to?

Once you know the vertical distance you intend to pump the water, it is time to calculate the horizontal distance between the top of your borehole and the destination of the water. The further away it is being pumped, the more pressure is needed to overcome factors such as viscosity which restricts the flow of water. Although the effects of viscosity are relatively small they can mount up when pumping over a large distance.

5)       What is the size of the pipe (diameter)?

The diameter of the pipe is an important factor. Essentially, the rule is that a smaller pipe diameter will cause more friction than a larger pipe (all things being equal), therefore, more pressure would be needed to overcome the pressure loss caused by the friction.

6)       What is the above ground elevation of your pipework?

Make note of any elevation between the top of the borehole to the highest point the water will be pumped to. This figure combines with pipe diameter, pipe length, standing water level and drawdown level to arrive at a total system head.

7)       What sort of flow rate would you need to achieve?

It is important to know what flow rate you hope to achieve, for example, if you were sizing a borehole pump up to supply a sprinkler system you would need both pressure and flow to make it work effectively.

8)       Do you have a single or three phase power supply?

Some borehole pumps are only available in either single or three phase versions, therefore, you will need to know what power supply you have available as this will limit your options.

9)       How will the pump be controlled?

Will you require the pump to be controlled automatically or manually? This really depends on what you hope to achieve with your system. For example, if you are planning on reducing the local water table it may be worth using an automatic borehole pump. That way, when the water is brought to its desired level, the pump will turn off automatically and wait for the water level to refresh, at which point the pump would begin pumping again.

10)   What is the refresh rate of the borehole?

Refresh rate describes the time natural water level would recover if pumping was stopped. If, for example, your aim is to reduce the local water table, you would have to ensure the refresh rate was not higher than the flow rate your system could achieve. Imagine if you had a half filled barrel of water and every minute you took one bucket of water out of it but put two back in, the water level would rise rather than fall.

As one of the leading providers of water pumps, ATAC Solutions’ team of knowledgeable and experienced advisors are always on hand to help you select the best pump for your job.

Atac Solutions – raising levels of quality management


UK specialists in wastewater management, ATAC Solutions, who offer engineered solutions including biological treatment processes and wastewater treatment systems in the domestic, municipal and industrial markets, is to redevelop its quality management systems in order to deliver even higher levels of customer service.

The company is to upgrade its existing ISO 9001 and ISO 14001 Certification – national standards in quality management and national environmental management, respectively – to ensure both meet the revised standard and receive British Assessment Bureau (BAB) accreditation.

The updated procedures will be integrated with a health and safety management system which is designed to optimise working practices and staff training opportunities across all areas of the business.

Jonathan Buckett, Managing Director of Pragmatic Integration, the software company overseeing the systems’ implementation, said: “By upgrading its accreditation, ATAC Solutions is further instilling confidence in its blue-chip client-base that it will complete projects on time and within budget. It takes time and investment to redevelop management systems to gain the very latest national accreditation. In taking the step, ATAC Solutions has proved how totally committed it is to delivering the highest-quality customer service.”

Since its formation in 2007, ATAC Solutions has grown to become one of the leading environmental engineering companies in the UK. The company, based in Maidstone, Kent, offers turnkey packages in wastewater treatment service, which include everything from repairs and maintenance on a wide range of pumping systems, to drain-jetting, product sales and equipment hire.

As well as upgrading its quality management systems, ATAC Solutions is also introducing a P-IMS online application system which will enable the company’s staff to gain instant access to management documentation. This will prove particularly useful for site engineers to validate training or equipment certification.

Jonathan Buckett, whose company is installing the system, said: “The online application programme means the company’s management systems, along with important project-related documentation, are available to all employees at all times via phone or tablet. It’s another example of how ATAC Solutions is streamlining its procedures for the ultimate betterment of the customer.”

There when you need us most


Every day approximately 11 billion litres of sewage is treated in 9,000 Sewage Treatment Plants (STPs) across the UK. The treated effluent is then discharged to inland waters, estuaries and the sea. One of the smallest, but most integral and probably underrated parts of these sewage treatment plants are the pumps which ensure the treated water reaches its next destination. But what happens when these pumps stop working?

A malfunctioning water pump can create a number of problems for STPs, especially if it is the only one in use. Without a functioning pump, the treated water builds up and cannot be discharged, the result: an unpleasant flood and a potential environmental hazard.

Whilst every effort is made to ensure pumps do not fail, there are always going to be occasions when incidences happen. ATAC Solutions, with a fleet of tankers, are always on hand to deal with such emergencies and provide emergency back up to ensure that treated water is discharged correctly. However, the most cost-effective solution to this issue is to source the correct replacement pump… and quickly!

With many manufacturers continually upgrading pumps or discontinuing models, it can be difficult to source the correct replacement. However, ATAC Solutions’ vast experience and extensive supply chain enables us to provide fast and effective solutions, to get your STP up and running as quickly as possible, with little disruption.

In the run-up to Christmas, ATAC Solutions helped a number of customers source the correct replacement pumps for their STPs. One of our customers had been struggling to source a Wilo Top-S 40/7 single phase pump, with little success. The pump, a highly specialised product, was obsolete, but ATAC Solutions were able to quickly find the most suitable replacement, a Yonos Maxo 40/0.5/8. Next day shipping meant that within 24 hours of contacting ATAC Solutions our customer had the correct pump and were able to get their STP functioning again.
ATAC Solutions’ industry knowledge and experience provides customers with cost-effective, time saving solutions and will ensure as little disruption to homes and business as possible.